Identification of a Novel Fungus, Leptosphaerulina chartarum SJTU59 and Characterization of Its Xylanolytic Enzymes
نویسندگان
چکیده
Xylanolytic enzymes are widely used in processing industries, e.g., pulp and paper, food, livestock feeds, and textile. Furthermore, certain xylanotic enzymes have demonstrated the capability to improve the resistance and immunity of plants. Screening of high-yield microbial xylanolytic enzyme producers is significant for improving large-scale cost-effective xylanolytic enzyme production. This study provided new evidence of high-level xylanolytic enzyme production by a novel fungus, designated Leptosphaerulina chartarum SJTU59. Under laboratory conditions, L. chartarum SJTU59 produced xylanolytic enzymes of up to 17.566 U/mL (i.e., 878.307 U/g substrate). The enzyme solution was relatively stable over a wide range of pH (pH 3.0 to pH 9.0) and temperature (40°C to 65°C) while showing high resistance to the majority of metal ions tested. Composition analysis of the hydrolytic products of xylan showed sufficient degradation by xylanolytic enzymes from L. chartarum SJTU59, mainly the monosaccharide xylose, and a small amount of xylobiose were enzymatically produced; whereas in the presence of sufficient xylan substrates, mainly xylooligosaccharides, an emerging prebiotic used in food industry, were produced. In addition, the xylanolytic enzyme preparation from L. chartarum SJTU59 could initiate tissue necrosis and oxidative burst in tobacco leaves, which may be related to enhanced plant defense to adversity and disease. L. chartarum SJTU59 possessed a complex xylanolytic enzyme system, from which two novel endo-β-1,4-xylanases of the glycoside hydrolase (GH) family 10, one novel endo-β-1,4-xylanase of the GH family 11, and one novel β-xylosidase of the GH family 43 were obtained via rapid amplification of complementary DNA ends. Given the high yield and stable properties of xylanolytic enzymes produced by L. chartarum SJTU59, future studies will be conducted to characterize the properties of individual xylanolytic enzymes from L. chartarum SJTU59. xylanolytic enzymes-encoding gene(s) of potential use for industrial and agricultural applications will be screened to construct genetically engineered strains.
منابع مشابه
Isolation, Identification and Partial Optimization of Novel Xylanolytic Bacterial Isolates from Bhilai-Durg Region, Chhattisgarh, India
Background: Plant biomass and agricultural waste products disposal is a serious problem in agriculture based countries. These wastes, usually rich in xylan can be satisfactorily converted to industrially important and useful products by efficient biotechnological application of potent xylanase producing bacteria which generally have high temperature and pH optima....
متن کاملIdentification and characterization of laccase-type multicopper oxidases involved in dye-decolorization by the fungus Leptosphaerulina sp.
BACKGROUND Fungal laccases are multicopper oxidases (MCOs) with high biotechnological potential due to their capability to oxidize a wide range of aromatic contaminants using oxygen from the air. Albeit the numerous laccase-like genes described in ascomycete fungi, ascomycete laccases have been less thoroughly studied than white-rot basidiomycetous laccases. A variety of MCO genes has recently ...
متن کاملProduction of cellulolytic and xylanolytic enzymes during growth of the anaerobic fungus Piromyces sp. on different substrates.
Piromyces sp. strain E2, an anaerobic fungus isolated from an Indian elephant (hindgut fermenter) was tested for its ability to ferment a range of substrates. The fungus was able to use bagasse, cellobiose, cellulose, fructose, glucose, lactose, mannose, starch, wheat bran, wheat straw, xylan and xylose. Formate and acetate were the main fermentation products after growth on these substrates. T...
متن کاملCloning and Characterization of cbhII Gene fromTrichoderma parceramosum and Its Expressionin Pichia pastoris
The genomic and cDNA clones encoding cellobiohydrolase II (CBHII) have been isolated and sequenced from a native Iranian isolate of Trichoderma parceramosum, a high cellulolytic enzymes producer isolate. This represents the first report of cbhII gene from this organism. Comparison of genomic and cDNA sequences indicates this gene contains three short introns and also an open reading frame codin...
متن کاملThe transcriptional activator XlnR regulates both xylanolytic and endoglucanase gene expression in Aspergillus niger.
The expression of genes encoding enzymes involved in xylan degradation and two endoglucanases involved in cellulose degradation was studied at the mRNA level in the filamentous fungus Aspergillus niger. A strain with a loss-of-function mutation in the xlnR gene encoding the transcriptional activator XlnR and a strain with multiple copies of this gene were investigated in order to define which g...
متن کامل